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Abstract. The mathematical tools to restore Galilei invariance in the nuclear many-body problem with
the help of projection techniques are presented. For simple oscillator configurations recursion relations for
the various elementary contractions are derived. The method is then applied to simple configurations for
the ground states of 4He, 16O and 40Ca as well as to the corresponding one-hole and one-particle states.
As a first application the spectral functions and spectroscopic factors for the above-mentioned doubly even
nuclei are investigated. It turns out that the conventional picture of an uncorrelated system underestimates
the single-particle strengths of the hole states from the last occupied shell while that of the higher excited
hole states is overestimated considerably. These results are in complete agreement with those derived by
Dieperink and de Forest using different methods. Similar effects are seen for the particle states which have
not been studied before. All the calculations presented here are performed analytically and thus can be
checked explicitly by the interested reader.

PACS. 21.60.-n Nuclear-structure models and methods

1 Introduction

Like classical mechanics non-relativistic quantum mechan-
ics, too, is based on three fundamental assumptions on the
structure of space and time.
– Time is homogeneous. Thus the total energy of a closed

system is conserved.
– Space is isotropic. Hence the total angular momentum

of a closed system is conserved.
– Space is homogeneous. Consequently the total linear

momentum of a closed system is a constant of motion,
too.
For the conventional nuclear many-body problem

which treats the nucleus as a closed system of elemen-
tary, non-relativistic nucleons interacting with each other
via some suitable effective interaction these three assump-
tions have the consequence that the corresponding Hamil-
tonian, however complicated it may be,
– cannot depend explicitely on time,
– has to conserve the total angular momentum,
– can besides on spin and isospin only depend on relative

coordinates and momenta but not on the center-of-
mass coordinate of the nucleons and only in a trivial
way on the total linear momentum.
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It will be the last of these three requirements which will
be studied extensively in the present and five forthcoming
papers.

Because of this requirement the Hamiltonian can be
written as a sum of an internal and a center-of-momentum
(COM) part

Ĥ = Ĥint

(
�ri − �RA, p̂i − 1

A
P̂A, σi, τi

)
+

P̂
2

A

2MA
, (1.1)

where we have introduced

�RA ≡ 1
A

A∑
i=1

�ri and P̂A =
A∑

i=1

p̂i , (1.2)

for the center-of-mass coordinate and the operator of the
total linear momentum of the considered A-nucleon sys-
tem, respectively. As usual in the nuclear many-body
problem we have assumed identical masses (M) for pro-
tons and neutrons.

Because of the separability of the Hamiltonian, its
eigenstates have the form

|Ψ〉 = |Ψint〉|�PA〉 , (1.3)

i.e., they factor into an internal state describing the rela-
tive motion of the nucleons and a trivial plane-wave state
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with momentum �PA describing the motion of the nucleus
as a whole. The correponding energies are

E = Eint +
�P

2

A

2MA
. (1.4)

Now the principle of relativity tells us that there is no
absolute motion. We can always choose that inertial frame
of reference in which the system is at rest. This we shall
call the “center-of-momentum (COM) rest frame”. Since
�PA = 0 in this frame, the many-body problem gets the
form of an internal Schroedinger equation

Ĥint |Ψint〉 = Eint |Ψint〉 (1.5)

depending only on relative coordinates and momenta.
Exactly this equation is used in few-body physics. One
rewrites the Hamiltonian in relative (“Jacobi”) coordi-
nates (and the conjugate momenta) and then solves (1.5).
Examples are the textbook treatment of the deuteron, the
Faddeev equations for the three-, or the Faddeev-Yaku-
bowski equations for the four-body problem.

In the nuclear many-body problem, however, this pro-
cedure can hardly be used. The reason for this is quite
simple: nucleons are undistiguishable, identical fermions
and thus their total wave function has to be antisymmet-
ric with respect to arbitrary exchanges of any two of them.
The relative coordinates, however, depend on all 3A nu-
cleon coordinates. Thus the antisymmetrisation has to be
done explicitly. This is still feasible in the three- and four-
body problems, though even there it requires considerable
effort. For heavier nuclei like, e.g., 20Ne or 40Ca, however,
it becomes simply impossible. Roughly speaking (i.e., for-
getting for the moment of all the needed angular momen-
tum and isospin algebra) there are only 3 ! = 6 terms for
three identical fermions but 20 ! ∼ 2.4×1018 terms for 20
of them.

Thus, instead of solving (1.5), in many-fermion physics
one usually expands the total wave function in terms of
Slater determinants (or generalized Slater determinants)
|D〉:

|Ψ〉 =
∑
D

|D〉 cD , (1.6)

which respect the Pauli principle by construction. The
price one has to pay is that (1.6) depends on 3A coordi-
nates instead of the 3A − 3 allowed by Galilei invariance.
It thus contains contaminations due to the motion of the
system as a whole, so-called “spurious” admixtures. By
assuming (1.6) one has sacrified Galilei invariance for the
sake of the Pauli principle.

Obviously this approximation is very good, if we con-
sider the many-electron problem in atomic physics. The
mass of the nucleon is about 2000 times heavier than that
of the electron and thus even in the worst case, the hy-
drogen atom, only a rather small error is made. In other
words: in atomic physics we have a natural coordinate
system with the origin, which is almost identical to the
COM coordinate, fixed to the nucleus. The same is true

for metallic clusters where the ion jelly is so much heavier
than the electrons again, and obviously in most problems
of solid-state physics, too.

In the nuclear many-body problem, however, such a
“natural” center is missing (and the same holds for the
non-relativistic constituent quark models). So how good is
the above approximation there? In almost all textbooks on
the nuclear many-body problem you will find a statement
claiming that the error will be of the order of 1/A and thus
“can savely be neglected as soon as nuclei above 16O are
considered” [1]. It is one of the central aims of the present
series of papers to question this kind of “general belief”.

The fact that there may be a problem was almost
immediately recognized after the development of the nu-
clear shell model. There was pioneering work on oscilla-
tor configurations by Elliot and Skyrme [2] as well as by
Tassie and Barker [3] and Giraud [4]. The methods de-
vised by them how to treat the COM motion are still
widely used in shell model configuration-mixing calcula-
tions (see, e.g., [5]). They are, however, restricted to pure
oscillator configurations and require furthermore a rather
special truncation of the model space (see subsect. 2.2).

The problem of how to restore Galilei invariance for the
case of arbitrary model spaces spanned by general (non-
oscillator) configurations was, at least in principle, solved
by some of the “giants” in the nuclear many-body problem
like Peierls, Yoccoz and Thouless [6–8] and a couple of
others already in the early sixties.

In fact it was shown [6] that the operator

ĈA(0) ≡
∫

d3�a Ŝ(�a ) ≡
∫

d3�a exp
[
i�a · P̂A

]
, (1.7)

if applied to any localized state of the type (1.6), does
project into the COM rest frame, i.e., restores transla-
tional invariance. Note, that the restriction “localized” is
here rather important. Being localized the COM has a fi-
nite momentum distribution. Consequently all the matrix
elements involving the operator (1.7) will converge and the
problem of projecting out something with “measure zero”
is avoided. Scattering states with, e.g., one nucleon in the
continuum have to be treated differently. Such states will
be discussed in the fourth and fifth paper of the present
series.

The action of (1.7) on a localized state involves the
integral over the usual “shift operator”. It can be under-
stood as a superposition of the state shifted all over normal
space with equal weight. In this way zero total momentum
is ensured. The procedure is quite similar to the restora-
tion of rotational invariance. There from any deformed
object in “intrinsic” space a spherical (zero angular mo-
mentum) state in the “laboratory” frame of reference can
be obtained by superposing all the rotated configurations
with equal weight and thus producing a result which is
independent of the choice of the direction of the quanti-
zation axis.

It should be stressed, however, that in general (1.7)
restores only the translational and not the full Galilei in-
variance. Only if either a double-projection technique [7]
is applied or if the restoration is performed before the wave
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function is determined, e.g., by variation, one obtains the
right mass [8,1]. Again this is rather similar to angular-
momentum projection. Also here the correct moment of
inertia is only obtained if the restoration of rotational in-
variance is performed before the variation.

Unfortunately, (1.7) is a rather complicated A-body
integral operator and its application is technically rather
involved. First of all, unlike rotations, which will never
lead out of a chosen model space as long as in the single-
particle basis for each total angular-momentum states all
the magnetic substates are included, spacial shifts are not
confined to any of the usual finite model spaces. They will
always mix the configurations inside the chosen space with
those outside. Closely connected to this complication is
the second problem: as far as rotations are concerned any
angular-momentum zero object remains invariant. Thus
it is easy to assume some (totally occupied) “inert” core
and restrict the model space to a few valence shells around
the Fermi level. If one wants to restore Galilei invariance,
such an assumption is not possible out of an obvious rea-
son: whenever the total linear momentum of the “valence”
nucleons is changed, this change has to be compensated by
the total momentum of the “core” nucleons in order that
the total linear momentum of the whole nucleus remains
zero. Thus, the restoration of Galilei invariance requires
necessarily that no inert core is assumed.

These complications may be the reason why, though
the method was known in principle already 30 years ago,
few practical calculations have been done restoring Galilei
invariance in this way. Only at the beginning of the 1990’s
there was a first Galilei-invariant Hartree-Fock calculation
by Schmid and Gruemmer [9], though only for 4He, and
by the same authors shortly afterwards an investigation of
the effects of restoring the translational invariance on the
charge densities of various nuclei [10]. Schmid and Rein-
hard [11] then investigated the problem of the charge den-
sities in more detail using Hartree-Fock wave functions ob-
tained with a particular Skyrme interaction [12]. All these
papers showed first hints on the importance of treating
Galilei invariance in the nuclear many-body problem cor-
rectly, were, however, restricted to rather special aspects.

The present series of papers tries to investigate the
problem in a more systematic way. For this purpose we
shall work in the first three articles entirely with simple
oscillator configurations: the ground-state configurations
of the three doubly closed shell nuclei 4He, 16O and 40Ca
as well as the one-hole states with respect to them. Config-
urations with one nucleon in the continuum will be treated
in the articles 4 and 5. The restriction to oscillator config-
urations seems somewhat surprising since, as already men-
tioned, there are other (less general) methods to treat the
COM problem in these cases, and furthermore, as we shall
see in subsect. 2.2, most of these configurations factor into
an internal part and a COM component with the COM in
a 0s-oscillator state and are hence “non-spurious”. How-
ever, for the one-hole states with excitation energies ≥ 1�ω
such a factorisation is not possible. Thus, we have the pos-
sibility to check the results of the projection into the COM
rest frame for the non-spurious states and to investigate

the effects of the restoration of Galilei invariance for those
configurations containing spurious admixtures at the same
time. Another advantage of using these simple configura-
tions is that all the calculations presented here can be
done analytically. Thus every reader which studies these
papers carefully and has some computer algebra code in-
stalled on his home or office computer can reproduce all
the results for himself. And, last but not least, using os-
cillator configurations in the present context is a rather
“conservative” approach. The use of more realistic config-
urations will only increase the effects of the COM motion.
Thus, the results presented here can be considered as a
sort of a “lower limit” for the COM effects to be obtained
in more realistic calculations.

The content of the present series of papers can be sum-
merized as follows. In sect. 2 of this first paper we shall
develop the mathematical tools needed to compute the
amplitudes of general observables in between oscillator
configurations with and without the projection into the
COM rest frame. Much of the content of this section can
be found in the literature, however, there is a lot of ma-
terial which is new, e.g., the recursion relations for the
matrix elements of a generalized shift operator as well as
for the corresponding elementary contractions. Section 3
will then be devoted to a first example: spectral func-
tions and spectroscopic factors. These have been derived
for the one-hole oscillator configurations already in 1974
by Dieperink and de Forest [13] using different methods.
Besides rederiving their results we shall, however, also in-
vestigate the one-particle states. In the second paper of
the present series then form factors for elastic and inelas-
tic electron scattering and the Coulomb sum rule as well
as its first and second moments will be discussed. The
third paper then deals with the energies of the considered
configurations computed with density-independent inter-
actions as well as with density-dependent forces. Papers
four and five will be devoted to problems with one nu-
cleon in the continuum. In particular standard approxi-
mations for the analysis of quasi-elastic electron scatter-
ing will be investigated. Paper four will present a sim-
ple knock-out model and use Woods-Saxon partial-wave
expansions for this purpose. In paper five then a more
microscopic coupled-channel approach will be studied. Fi-
nally, in the sixth paper, the formalism will be extended
to generalized Slater determinants of the Hartree-Fock-
Bogoliubov type and combined with angular momentum,
particle number and parity projections. This paper will
show how, in principle, completely unrestricted Hartree-
Fock-Bogoliubov calculations with symmetry projection
before the variation can be done including the restoration
of full Galilei invariance.

2 Mathematical tools

In this section we shall develop the mathematical tools
needed to compute the expectation values and transition
amplitudes of various observables with and without pro-
jection into the center-of-momentum (COM) rest frame.
We shall start in subsect. 2.1 by defining the notation
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we shall use for spherical three-dimensional harmonic-
oscillator states. This is common textbook knowledge and
hence will be sketched only briefly. In subsect. 2.2 we
shall then introduce oscillator determinants as A (and
A − 1) nucleon states, discuss their COM properties and
define the elementary contractions needed to calculate
the unprojected matrix elements of arbitrary observables.
This could obviously be done in a simpler (the normal)
way, however, to compare the unprojected results directly
with the COM-projected ones later on, it is preferable to
represent them in a similar fashion. Subsection 2.3 then
presents the elementary contractions in between shifted
oscillator determinants needed to compute the COM-
projected matrix elements of arbitrary observables. For
this purpose a generalized shift operator modified by two
recoil operators is used. This is the central part of the
present section. Finally, in subsect. 2.4 we shall calculate
the norm for COM-projected doubly closed major shell de-
terminants and the COM-projected one-hole states with
respect to them.

2.1 The spherical three-dimensional harmonic
oscillator

The Hamiltonian for a particle with mass M in a spher-
ical three-dimensional harmonic-oscillator potential has
the form

ĥ =
�̂p

2

2M
+

1
2
Mω2�r 2 , (2.1)

where �r is the space vector and �̂p the corresponding mo-
mentum operator. In Cartesian representation, the eigen-
states of (2.1) can be written as |�n〉, where �n is the vector
of the numbers of oscillator quanta in the three different
space directions. The corresponding eigenvalues are

E(�n) ≡ EN =
(

N +
3
2

)
�ω, with N ≡

3∑
i=1

ni . (2.2)

The space representation of the oscillator eigenstates can
be written as

〈�r |�n 〉 ≡ 〈�r |n1n2n3〉 =(
1

b
√

π

)3/2

exp
{
−1

2
x2

} 3∏
i=1

(xi|ni) , (2.3)

where b is the usual oscillator length (b2 = �/Mω) and
x ≡ |�x| ≡ |�r/b|. For the polynomial parts of (2.3)
(xi|ni) ≡ Rni

(xi) and their derivatives we have the re-
cursion relations

R0(xi) = 1 ,

Rni+1(xi) =
√

2
ni + 1

xiRni
(xi) −

√
ni

ni + 1
Rni−1(xi) ,

d
dxi

Rni
(xi) =

√
2niRni−1(xi) . (2.4)

The corresponding momentum space representation is

〈�k |�n 〉 ≡
(

b√
π

)3/2

exp
{
−1

2
κ2

} ν∏
i=1

(κi|ni) , (2.5)

where �κ ≡ b�k. Here the polynomial parts are

(κi|ni) = (−i)niRni
(κi) . (2.6)

For the space representation of the lowest few oscillator
states one obtains

〈�r |000〉 =
(

1
b
√

π

)3/2

exp
{− 1

2x2
}

,

〈�r |100〉 = 〈�r |000〉√2x1 ,
〈�r |010〉 = 〈�r |000〉√2x2 ,
〈�r |001〉 = 〈�r |000〉√2x3 ,

〈�r |200〉 = 〈�r |000〉
{
− 1√

2
(1 − 2x2

1)
}

,

〈�r |110〉 = 〈�r |000〉2x1x2 ,

〈�r |020〉 = 〈�r |000〉
{
− 1√

2
(1 − 2x2

2)
}

,

〈�r |101〉 = 〈�r |000〉2x1x3 ,

〈�r |002〉 = 〈�r |000〉
{
− 1√

2
(1 − 2x2

3)
}

,

〈�r |011〉 = 〈�r |000〉2x2x3 .

(2.7)

Let us simplify the notation by introducing

|0s〉 ≡ |000〉 ,
|i〉 ≡ {|100〉, |010〉, |001〉} ,

|2i〉 ≡ {|200〉, |020〉, |002〉} ,
|i < j〉 ≡ {|110〉, |101〉, |011〉} ,

(2.8)

with i, j = 1, 2, 3. In this notation the momentum space
representation of the states (2.7) becomes

〈�k |0s〉 =
(

b√
π

)3/2

exp
{− 1

2κ2
}

,

〈�k |i〉 = 〈�k |0s〉{−i
√

2κi

}
,

〈�k |2i〉 = 〈�k |0s〉
{

1√
2
(1 − 2κ2

i )
}

,

〈�k |i < j〉 = 〈�k |0s〉 {−2κiκj} .

(2.9)

In spherical coordinates one has, on the other hand,

〈�r |nlλ〉 ≡ b−3/2π−1/4 exp
{
−1

2
x2

}

×2

√
(2n + 2l + 1)!!

n!2n

(√
2x
)l

Ylλ(r̂)

×
n∑

K=0

(−)K

(
n
K

)
1

(2l + 2K + 1)!!

(√
2x
)2K

. (2.10)

Comparing this with the Cartesian representation, one ob-
tains

|0s0 〉 = |000〉 ,


|0p + 1〉
|0p0 〉
|0p − 1〉


 =




− 1√
2

− i√
2

0
0 0 1

+ 1√
2

− i√
2

0






|100〉
|010〉
|001〉


 , (2.11)



K.W. Schmid: Some considerations on the restoration of Galilei invariance... 33




|1s0 〉
|0d + 2〉
|0d + 1〉
|0d0 〉
|0d − 1〉
|0d − 2〉




=




− 1√
3
− 1√

3
− 1√

3
0 0 0

+ 1
2 − 1

2 0 + i√
2

0 0
0 0 0 0 − 1√

2
− i√

2

− 1√
6
− 1√

6
+ 2√

6
0 0 0

0 0 0 0 + 1√
2
− i√

2

+ 1
2 − 1

2 0 − i√
2

0 0







|200〉
|020〉
|002〉
|110〉
|101〉
|011〉




.

It is easily checked that the transformations (2.11) are
unitary.

Now nucleons are spin-(1/2) fermions and come in two
species, protons and neutrons. Thus in addition to |�n〉 one
has to specify spin and isospin quantum numbers. The
corresponding creation operators, creating from the par-
ticle vacuum |0〉 a fermion with spin and isospin quantum
numbers 1 ≡ σ1, τ1 in an oscillator eigenstate |�n〉 are
denoted by

b†�n 1|0〉 ≡ |�n〉|1〉 . (2.12)

2.2 Harmonic-oscillator determinants and elementary
contractions

From (2.1) one can construct a many-body Hamiltonian
for A-independent particles moving in three-dimensional
harmonic-oscillator states:

Ĥ0 ≡
A∑

i=1

ĥ(i) =
1

2M

A∑
i=1

�̂p 2(i) +
1
2
Mω2

A∑
i=1

�r 2(i) =

1
2M

A∑
i=1

(
�̂p(i) − 1

A
�̂PA

)2

+
1
2
Mω2

A∑
i=1

(
�r(i)− �RA

)2

+
�̂P

2

A

2MA
+

1
2
MAω2 �R2

A ≡ Ĥ inv
0 (A)+Ĥcom

0 (A) , (2.13)

where we have introduced the center of mass and the total
momentum of the system according to eq. (1.2).

The eigenstates of this Hamiltonian are oscillator
Slater determinants

|D〉 =
A∏

�n 1∈D

b†�n 1|0〉 (2.14)

and can be classified by the number of occupied quanta

Ntot(D) =
A∑

�n1∈D

N(�n) =
∑
�n∈D

∑
1

(�n)

(
3∑

i=1

ni

)
(2.15)

(2.13) does not mix configurations with different Ntot. Be-
cause of the separation of the Hamiltonian into a Galilei

invariant internal and a COM part, each of the Slater de-
terminants (2.14) can furthermore be written as a linear
combination

|D〉 =
Ntot∑

Ncom=0

|(Ntot − Ncom)inv〉|(Ncom)com〉fNcom . (2.16)

From this the so-called “non-spurious” part (i.e., the com-
ponent with the COM in its |(0s)com〉 ground state) may
be obtained as already proposed by Giraud [4] via diago-
nalizing Ĥcom

0 in the space of all |D〉 belonging to the same
Ntot and keeping only those eigenstates with Ncom = 0.
This procedure is applied, e.g., in some shell model ap-
proaches [5].

If all shells up to a maximum Nmax(�n) = N − 1 are
filled and the remaining (“valence”) particles are confined
to the shell with N quanta, then the COM is fixed in its
ground-state configuration. This holds, e.g., for the oscilla-
tor ground-state configurations | 〉 of doubly closed major
shell nuclei as well as for the one-hole states with respect
to them, provided the hole is made in the last shell. In
these cases

〈∣∣∣∣∣
�̂PA

2

2MA

∣∣∣∣∣
〉

=
1
2
〈|Ĥcom

0 (A)|〉 =
3
4

�ω (2.17)

and, for �n and �n ′ out of the last major shell

〈∣∣∣∣∣b†�n 1

�̂P
2

A−1

2M(A − 1)
b�n ′ 2

∣∣∣∣∣
〉

=

1
2
〈 |b†�n 1Ĥ

com
0 (A − 1)b�n ′ 2| 〉 = δ�n�n ′∆12

3
4

�ω , (2.18)

where ∆12 ≡ δ(σ1, σ2)δ(τ1, τ2) and the oscillator state �n
with the spin-isospin quantum numbers σ1, τ1 has to be
occupied in the determinant | 〉. In both equations (2.17)
and (2.18) �ω is the oscillator energy out of eq. (2.2). As
we shall see, for holes in deeper shells (i.e., those with
excitation energies ≥ 1�ω), the relation (2.18) does not
hold. Here (as will be demonstrated in part 3 of the present
series of papers) one has to project into the center-of-
momentum rest frame.

We shall furthermore define three-dimensional plane-
wave states with spin and isospin quantum numbers 1 =
σ1, τ1 by

c†�k1 1
|0〉 ≡ |�k1〉|1〉 , (2.19)

with

〈�r |�k1〉 = (2π)−3/2 exp{i�k1 · �r } (2.20)

and introduce the notation Hh with capital H denot-
ing the oscillator state (|�n〉 or |nlλ〉) and small h the
corresponding spin and isospin quantum numbers for all
the occupied states in the spin- and isospin-saturated
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determinants

| 〉 =
A∏

Hh=1

b†Hh|0〉 =




|(0s)4〉 for 4He
|(0s)4(0p)12〉 for 16O

|(0s)4(0p)12(1s0d)24〉 for 40Ca


 . (2.21)

Particle states with respect to (2.21) will be denoted by
Pp, respectively.

We can now calculate the elementary contractions
within these configurations. Obviously,

〈 |b†HhbH′h′ | 〉 = δH′H∆h′h (2.22)

for all the states |Hh〉 which are occupied in | 〉. Further-
more,

〈 |c†�k1 1
bH′h′ | 〉 =∑

H1h1

〈H1h1|�k1 1〉〈 |b†H1h1
bH′h′ | 〉 = 〈H ′h′|�k1 1〉 =

√
b3

π
√

π
exp
{
−1

2
κ2

1

}
∆h′ 1 (H ′|�κ1) , (2.23)

while

〈 |b†Hhc�k2 2| 〉 =∑
H2h2

〈�k2 2|H2h2〉〈 |b†HhbH2h2 | 〉 = 〈�k2 2|Hh〉 =

√
b3

π
√

π
exp
{
−1

2
κ2

2

}
∆2 h (�κ2|H) (2.24)

and, finally,

〈 |c†�k1 1
c�k2 2| 〉 =∑

H1h1H2h2

〈�k2 2|H2h2〉〈H1h1|�k1 1〉〈 |b†H1h1
bH2h2 | 〉 =

b3

π
√

π
exp
{
−1

2
(κ2

1 + κ2
2)
}

∆2 1

∑
H

(�κ2|H)(H|�κ1) ≡

b3

π
√

π
exp
{
−1

2
(κ2

1 + κ2
2)
}

∆2 1 y(�κ2, �κ1) . (2.25)

The polynomial parts (κ2|H) are given in (2.9). For the
function y we obtain immediately

y(�κ2, �κ1) =


1 for 4He
1 + 2�κ1 · �κ2 for 16O

5
2 − (�κ1 − �κ2)2 + 2(�κ1 · �κ2)2 for 40Ca


 . (2.26)

The elementary matrix elements (2.22) to (2.25) are
sufficient to compute the unprojected matrix elements of
arbitrary observables in between the determinants (2.21)
and the one-hole excitations with respect to them.

2.3 Shifted-oscillator determinants and elementary
contractions

For the calculation of the corresponding COM-projected
matrix elements we consider a generalized version of the
A-body shift operator in (1.7) modified by two recoil op-
erators

ẐA ≡ exp{iA�q1 · �RA/b} exp{i�α · b �̂PA}
× exp{−iA�q2 · �RA/b} =
A∏

i=1

exp{i�q1 · �x (i)} exp{i�α · b�̂p (i)}

× exp{−i�q2 · �x (i)} =
A∏

i=1

ẑ(i) , (2.27)

where �q1 and �q2 are two dimensionless momenta and
�α ≡ �a/b is the dimensionless shift vector. The matrix
element of (2.27) in between two arbitrary Slater deter-
minants is then given by the determinant of the single-
particle matrix elements of ẑ in between the occupied
states of these determinants. Note, that this operator does
not mix states with different spin and isospin quantum
numbers. Thus, we can write

〈�n 1|ẑ|�n ′ 2〉 = ∆12〈�n|ẑ|�n ′〉 ≡ Z�n�n ′ . (2.28)

The matrix elements Z�n�n ′ can be calculated easily. One
obtains

Z�n�n ′ ≡ 〈�n| exp{i�q1 · �x} exp{i�α · b�̂p } exp{−i�q2 · �x}|�n ′〉 =

exp
{
−1

4
α2 − i

2
(�q1 + �q2) · �α − 1

4
(�q1 − �q2)2

}
z�n�n ′ ≡

Z00 z�n�n ′ . (2.29)

Again the polynomial parts can be written as

z�n�n ′ ≡
3∏

i=1

ζnin′
i
. (2.30)

Defining

�β ≡ 1√
2

(
�α − i[�q1 − �q2]

)
and �β ′ ≡ 1√

2

(
�α + i[�q1 − �q2]

)
, (2.31)

one obtains the recursion relations

ζ00 = 1 ,

ζni+1n′
i

=
−βi√
ni + 1

ζnin′
i

+

√
n′

i

ni + 1
ζnin′

i−1 ,

ζnin′
i+1 =

+β′
i√

n′
i + 1

ζnin′
i

+
√

ni

n′
i + 1

ζni−1n′
i
. (2.32)

For (doubly) closed oscillator major shells (all shells up to
NF fully occupied) we obtain then

〈 |ẐA| 〉 = detZA = (Z00)
A

, (2.33)
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with the determinant of the “reduced overlap matrices” z
out of eq. (2.30) being identical to one. The corresponding
minors are

〈 |b†HhẐA−1bH′h′ | 〉 = (Z00)
A−1

∆h′h z−1
H′H . (2.34)

Because of the non-spuriousity of holes within the last
shell, the inverse of the reduced overlap matrices can be
computed by simple (matrix) recursion relations. Denot-
ing by “1” all the oscillator states {�n ; N(�n) ≤ NF } up to
the shell NF and by “2” all states {�n ; N(�n) = NF + 1}
out of the shell NF + 1 and the corresponding reduced
matrices out of eq. (2.34) within these states by boldface
characters one obtains

z(NF =0)−1

00 = 1 ,

z(NF +1)−1

22 = 122 ,

z(NF +1)−1

12 = −z(NF )−1

11 z12 ,

z(NF +1)−1

21 = −z21 z(NF )−1

11 ,

z(NF +1)−1

11 = z(NF )−1

11 + z(NF +1)−1

12 z(NF +1)−1

21 . (2.35)

For the additional elementary contractions we obtain

〈 |c†�k1 1
ẐA−1bH′h′ | 〉 =

∆h′1 (Z00)
A−1

(
b√
π

)3/2

exp
{
−1

2
κ2

1

}

×
∑

H ≤F

z−1
H′H(H|�κ1) ≡

∆h′1 (Z00)
A−1

(
b√
π

)3/2

exp
{
−1

2
κ2

1

}
r̃H′ (�κ1), (2.36)

where the sum (H ≤ F ) runs over all states �n which are
occupied in | 〉. Furthermore

〈 |b†HhẐA−1c�k2 2| 〉 =

∆2h (Z00)
A−1

(
b√
π

)3/2

exp
{
−1

2
κ2

2

}

×
∑

H′ ≤F

(�κ2|H ′)z−1
H′H ≡

∆2h (Z00)
A−1

(
b√
π

)3/2

exp
{
−1

2
κ2

2

}
rH (�κ2) (2.37)

and, finally,

〈 |c†�k1 1
ẐA−1c�k2 2| 〉 =

∆21 (Z00)
A−1

(
b√
π

)3

exp
{
−1

2
(κ2

2 + κ2
1)
}

×
∑

H′, H ≤F

(�κ2|H ′)z−1
H′H(H|�κ1) =

∆21 (Z00)
A−1

(
b√
π

)3

exp
{
−1

2
(κ2

2 + κ2
1)
}

x (�κ2, �κ1) .

(2.38)

Again there exist recursion relations for the vectors r̃
and r and for the scalar x. Using the the matrices out of
eq. (2.35), we obtain

r̃
(0)
0 (κ1)=1,

r̃(NF +1)
2 (κ1)=(2|�κ1) − z(NF +1)

21 r̃(NF )
1 (�κ1),

r̃(NF +1)
1 (κ1)= r̃(NF )

1 (κ1) + z(NF +1)−1

12 r̃(NF +1)
2 (κ1), (2.39)

while

r
(0)
0 (κ2)=1,

r(NF +1)
2 (κ2)=(�κ2|2) − r(NF )

1 (�κ2)z
(NF +1)
12 ,

r(NF +1)
1 (κ2)=r(NF )

1 (κ2) + r(NF +1)
2 (κ2)z(NF +1)−1

21 , (2.40)

and

x(0) (�κ2, �κ1)=1 ,

x(NF +1) (�κ2, �κ1)=x(NF ) (�κ2, �κ1)

+r (NF +1)
2 (κ2) · r̃ (NF +1)

2 (κ1) , (2.41)

where in the last line the scalar product of the vectors r
and r̃, restricted to the components out of the shell NF +1,
is meant.

Using the notation out of (2.8) and the recursion re-
lations (2.32), we obtain for the reduced shifted overlap
matrix elements (2.32) up to the 1s0d-shell

z00 = 1 , z0k = +β′
k ,

z02k = +β′
k
2
/
√

2 , z0k<l = β′
kβ′

l ,

zi0 = −βi , zik = δik − βiβ
′
k ,

zi2k = β′
k(2δik − βiβ

′
k)/

√
2 ,

zik<l = β′
kδil + β′

lδik − βiβ
′
kβ′

l ,

z2i0 = +βi
2/
√

2 , z2ik = −βi(2δik − βiβ
′
k)/

√
2 ,

z2i2k = δik[1 − 2βiβ
′
k] + β2

i β′
k
2
/2 ,

z2ik<l = −
√

2(βiβ
′
lδik + βiβ

′
kδil − β2

i β′
kβ′

l/2) ,

zi<j0 = βiβj , zi<jk = −βiδjk − βjδik + βiβjβ
′
k ,

zi<j2k = −
√

2(βjβ
′
kδik + βiβ

′
kδjk − β′ 2

kβiβj/2) ,

zi<jk<l = δikδjl − βiβ
′
kδjl − βiβ

′
lδjk

−βjβ
′
kδil − βjβ

′
lδik + βiβjβ

′
kβ′

l . (2.42)

Using (2.35), we obtain assuming the usual oscillator
occupations (2.21) of 4He, 16O and 40Ca for the matrix
elements z−1

H′H out of eq. (2.34) subsequently

z−1
00 = 1 (2.43)

for 4He, while, for 16O,

z−1
00 = 1 − �β · �β ′ , z−1

k0 = +βk ,

z−1
0i = −β′

i , z−1
ki = δki , (2.44)
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and, finally, for 40Ca

z−1
00 = 1 − �β · �β ′ + (�β · �β ′)2/2 ,

z−1
k0 = βk(1 − �β · �β ′) ,

z−1
2k0 = +β2

k/
√

2 , z−1
k<l0 = βkβl ,

z−1
0i = −β′

i(1 − �β · �β ′) ,

z−1
ki = δki(1 − �β · �β ′) − βkβ′

i ,

z−1
2ki = +

√
2βkδki , z−1

k<li = δkiβl + δliβk ,

z−1
02i = +β ′

i
2
/
√

2 , z−1
k2i = −

√
2β′

iδki ,

z−1
2k2i = δki , z−1

k<l2i = 0 ,

z−1
0i<j = β ′

iβ
′
j , z−1

ki<j = −δkiβ
′
j − δkjβ

′
i ,

z−1
2ki<j = 0 , z−1

k<li<j = δkiδlj . (2.45)

Note, that z−1
H′H = z−1

H′H(�β, �β ′ ) with �β and �β ′ given
by eq. (2.31). Defining

�β 1 ≡ �β + i
√

2�κ1 and �β ′
2 ≡ �β ′ + i

√
2�κ2 (2.46)

and using the recursion relations (2.39), (2.40) and (2.41),
we obtain for 4He (since H = H ′ = 0)

r̃0 (�β1, �β ′ ) = r0 (�β ′
2,

�β ) = x(�β ′
2,

�β1 ) = 1 , (2.47)

while, for 16O

r̃H ′ (�β1, �β ′ ) =
{

1 − �β ′ · �β1 for H ′ = 0
β1k for H ′ = k

}
, (2.48)

rH (�β ′
2,

�β ) =
{

1 − �β ′
2 · �β for H = 0

−β ′
2i for H = i

}
, (2.49)

x(�β ′
2,

�β1 ) = 1 − �β1 · �β ′
2 , (2.50)

and, for 40Ca

r̃H ′ (�β1, �β ′ ) =


1−�β ′ · �β1+(�β ′ · �β1)2/2 + β ′2/2 for H ′ = 0
β1k(1 − �β ′ · �β1) − β ′

k for H ′ = k
+(1 + β1k

2)/
√

2 for H ′ = 2k
β1kβ1l for H ′ = k < l




(2.51)

rH (�β ′
2,

�β ) =


1 − �β · �β ′
2 + (�β · �β ′

2)
2/2 + β2/2 for H = 0

−β ′
2i(1 − �β · �β ′

2) + βi for H = i

+(1 + β ′
2i

2)/
√

2 for H = 2i
β ′

2iβ
′
2j for H = i < j



(2.52)

x(�β′
2,

�β1) = 5/2 + (�β1 − �β′
2)

2/2 + (�β1 · �β′
2)

2/2 . (2.53)

2.4 Normalisation

From the above formulas the norms of the considered
COM-projected determinants can be calculated easily. For

�q = �q ′ = 0 the operator (2.27) reduces to the usual
shift operator ŜA(�a), which appears in the projector to
the COM rest frame ĈA(0), defined by eq. (1.7). For the
normalisation of the A-nucleon states | 〉 we obtain there-
fore

NA ≡ 〈 |ĈA(0)| 〉 =
∫

d3�a〈 |ŜA(�a)| 〉 =

b3π
√

π
1

π
√

π

∫
d3�α (S00)

A =

b3π
√

π
1

π
√

π

∫
d3�α exp

{
−A

4
α2

}
=
(

4πb2

A

)3/2

, (2.54)

where we have used (2.33) and (2.29).
In the same way the integrated overlap matrices within

one-hole states can be calculated. Here one obtains

(NA−1)H′h′Hh ≡ 〈 |b†HhĈA−1(0)bH′h′ | 〉 =∫
d3�a〈 |b†HhŜA−1(�a)bH′h′ | 〉 =

b3π
√

π
1

π
√

π

∫
d3�α exp

{
−A − 1

4
α2

}
× ∆h′h s−1

H′H(�β = �β ′ = �α/
√

2) =(
4πb2

A − 1

)3/2 1
π
√

π

∫
d3�z exp{−z2}

× ∆h′h s−1
H′H

(
�β = �β ′ =

√
2

A − 1
�z

)
. (2.55)

Using (2.43) to (2.45) as well as the unitary transforma-
tions (2.11) one obtains for A = 4

(NA−1)H′h′Hh =
(

4πb2

A − 1

)3/2

∆h′h , (2.56)

while for A = 16 the only non-vanishing matrix elements
are

(NA−1)H′h′Hh =
(

4πb2

A − 1

)3/2

×∆h′h

{ 4
5 for H =H ′ = 0s

1 for H =H ′ = 0pλ

}
(2.57)

and for A = 40 we get as non-trivial results

(NA−1)H′h′Hh =
(

4πb2

A − 1

)3/2

×∆h′h




941
1014 for H = H ′ = 0s

− 1
39

√
3
2 for H = 0s, H ′ = 1s

− 1
39

√
3
2 for H = 1s, H ′ = 0s

1 for H = H ′ = 1s
35
39 for H = H ′ = 0pλ

1 for H = H ′ = 0dλ




. (2.58)
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Non-diagonal matrix elements appear only for the s-holes
in 40Ca. For these we do a Cholesky decomposition. De-
noting the 1s-state with “1”, the 0s-state with “2”, we can
write
 1 − 1

39

√
3
2

− 1
39

√
3
2

941
1014


 =

(
L11 0
L21 L22

)(
L11 L21

0 L22

)
. (2.59)

From these equations we obtain easily

L ≡
(

L11 0
L21 L22

)
=

(
1 0

− 1
39

√
3
2

√
940
1014

)
. (2.60)

The inverse matrix can be calculated easily, too. Here one
obtains

L−1 =

(
1 0
1√
940

√
1014
940

)
. (2.61)

Using these results, we obtain for the normalized internal
A-nucleon states in the center-of-mass rest frame

| , (0)〉 ≡ ĈA(0)| 〉
(

A

4πb2

)3/4

, (2.62)

while for the corresponding internal one-hole states

|(Hh)−1, (0)〉 ≡ ĈA−1(0)bHh| 〉
(

A − 1
4πb2

)3/4

×




1 for H = 0s in 4He
1 for H = 0pλ in 16O√

5
4 for H = 0s in 16O

1 for H = 1s in 40Ca
1 for H = 0dλ in 40Ca√
39
35 for H = 0pλ in 40Ca




(2.63)

and for the (with respect to the 1s-hole) Gram-Schmidt–
orthogonalized 0s̃-hole in 40Ca we have

|(0s̃, h)−1, (0)〉 ≡ ĈA−1(0)

×
(

b0s0h| 〉
√

1014
940

+ b1s0h| 〉 1√
940

)(
A − 1
4πb2

)3/4

. (2.64)

Now we have all the mathematical ingrediences needed
for the following and can start our task to investigate the
effects of the restoration of Galilean invariance on various
observables.

3 Spectral functions and spectroscopic factors

As a first example for the effects of the restoration of the
Galilei invariance we want to evaluate the spectral func-
tions and spectroscopic factors for the uncorrelated oscil-
lator A-nucleon ground states of the doubly closed shell
nuclei listed in (2.21). For single Slater-determinant states

the usual hole spectral functions are trivial. We obtain for
all occupied (hole) states Hh

fnor
Hh (�k) ≡ 〈 |c†�k h

bHh| 〉 = 〈H|�k〉 . (3.1)

The hole spectral functions are thus the complex conju-
gates of the momentum space representation all the occu-
pied states. They measure the “momentum dependence of
the hole states”.

The states (2.19) occuring in (3.1) form a complete set.
Therefore the spectroscopic factors are

Snor
Hh ≡

∫
d3�k |fnor

Hh (�k)|2 =
{

1 for Hh occupied
0 else

}
(3.2)

and, obviously ∑
Hh

Snor
Hh d(H) = A , (3.3)

where d(H) is the degeneracy (2lH+1, lH being the orbital
angular momentum) of the state H.

Similarly, the particle spectral functions are just given
by

fnor
Pp (�k) ≡ 〈 |c�k pb

†
p| 〉 = 〈�k| P 〉 . (3.4)

Again the spectroscopic factors are trivial. We obtain

Snor
Pp ≡

∫
d3�k |fnor

Pp (�k)|2 =
{

0 for Pp occupied
1 else

}
. (3.5)

This is the “normal” description of an uncorrelated
state as indicated by the superscript “nor” in the above
equations. The deviations from this simple picture usually
are interpreted as a measure for correlations.

However, this description does not conserve Galilei in-
variance. In order to restore the latter we have first to
ensure that the initial as well as the final bound systems
are in their respective COM rest frames and second the
plane wave nucleon has to be described by a relative mo-
tion wave function with respect to the (A − 1)-nucleon
system. For the (not yet normalized) hole spectral func-
tion thus we have to calculate

〈 |c†�k h
exp{−i�k · �RA−1}ĈA−1(0)bHh| 〉 =∫

d3�a〈 |c†�k h
exp{−i�k · �RA−1} exp{i�a · P̂A−1}bHh| 〉 =

(
4

A − 1

)3/2

b3π
√

π

(
b√
π

)3/2

exp
{
−1

2
A

A − 1
κ2

}

× 1
π
√

π

∫
d3�y exp{−y2}r̃H(�β

′
, �β1) , (3.6)

where use has been made of the operator (2.27) with �q1 =
−�κ/(A−1) and �q2 = 0. The functions r̃H are given in eqs.
(2.47), (2.49) and (2.51) for the three considered nuclei,
respectively, and

�β ′ ≡
√

2
A − 1

�y ,
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while

�β1 ≡
√

2
A − 1

�y + i
√

2
A

A − 1
�κ . (3.7)

Using the normalisation of the A-nucleon determinants
(2.54) and the corresponding 1-hole states (2.63) and
(2.64) one obtains

fpro
Hh (�k) = 〈H|�k〉rel

√
Spro

Hh , (3.8)

where the superscript “pro” refers here to the translation-
ally invariant “projected” description and the subscript
“rel” indicates that in the Fourier transform of the os-
cillator function H the nucleon mass M (occuring in the
oscillator length) has to be replaced by the reduced mass
MA/(A − 1). In Cartesian representation of momentum
space we have (see eq. (2.5))

〈�n |�k 〉rel =
(

b√
π

)3/2(
A

A−1

)3/4

× exp
{
−1

2
A

A−1
κ2

} 3∏
i=1

(
ni|
√

A

A−1
κi

)
. (3.9)

The projected spectroscopic factors in eq. (3.8) are
given by

Spro
H =




1 for H = 0s in 4He

4
5 for H = 0s in 16O

16
15 for H = 0p in 16O

1410
1521 for H = 0s̃ in 40Ca

1400
1521 for H = 0p in 40Ca

1600
1521 for H = 1s in 40Ca

1600
1521 for H = 0d in 40Ca




, (3.10)

respectively. The subscript h has been supressed here,
since the spectroscopic factors are the same for each spin-
isospin combination. The tilde on the 0s̃ state for 40Ca
indicates that here the orthonormalized state (2.64) is
meant. The results (3.10) are identical to those derived
by Dieperink and de Forest already in 1974 [13]. Their
method to obtain (3.10), however, is confined to harmonic-
oscillator configurations, while the projection method used
here can be also used for general configurations.

It is easily checked that as in the unprojected case∑
Hh

Spro
Hhd(H) = A . (3.11)

The spectroscopic factors for the hole states out of
eq. (3.10) are displayed in fig. 1. The general feature (ex-
cept for the trivial case of 4He) is that the occupation
of the low-lying shells (with excitation energies ≥ 1�ω)
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Fig. 1. The projected hole spectroscopic factors (3.10) are
plotted for the three nuclei 4He, 16O and 40Ca. They have
to be compared with the conventional description (3.2) of an
uncorrelated system which gives one for all the occupied states.

is depleted while that of the (non-spurious) hole states
in the last shell is enhanced. On first sight spectroscopic
factors with values larger than one may be hard to un-
derstand. However, consider the simple example of two
spinless fermions living in one dimension and occupying
the oscillator states (b = 1 fm, for simplicity)

〈x|1〉 = (
√

π)−1/2 exp{−x2/2}
and 〈x|2〉 = (2

√
π)−1/2 exp{−x2/2}x . (3.12)

Constructing a Slater determinant out of these two states
and calculating the hole spectroscopic factors in the
normal way, one obtains by construction Snor

1 = Snor
2 = 1.

Using the Galilei-invariant prescription, however, one re-
alises immediately that a relative state of the form ∼
exp{−(x(1) − x(2))2/4} cannot be formed with this two
wave functions. Thus the projected spectroscopic factors
are here Spro

1 = 0 and Spro
2 = 2. Now nucleons have spin

and isospin and live in three instead of one dimensions.
Nevertheless, looking at the results for 16O one still sees
the “remainder” of what is obtained in the simple one-
dimensional example. The physical reason is quite simple:
the hole states with excitation energies larger or equal 1�ω
contain spurious admixtures due to the motion of the nu-
cleus as a whole. Eliminating these via projection into the
COM rest frame leads to a depletion of the corresponding
hole strenth. On the other hand, the sum rule (3.11) has
to be fulfilled. Consequently the eliminated strength reap-
pears in the last (non-spurious) shell. A similar argument
is also given in ref. [13].

For the particle states the situation is a little more
complicated. Since the projection operator into the COM
rest frame mixes the various radial excitations with the
same angular-momentum quantum numbers, the direct
analog to (3.6) is difficult to normalize. Thus, we use here
a sligthly different prescription. We start by computing
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the (normalized) particle-particle overlap kernels

n12(�k, �k ′) ≡
〈 | exp{i�k · �RA}c�k 1ĈA+1(0)c†�k ′ 2

exp{−i�k ′ · �RA}| 〉
〈 |ĈA(0)| 〉 =

∆12

{
δ(3)(�k ′ − �k) − b3

π
√

π

(
A

A − 1

)3/2

× exp
{
− A2 + 1

2A(A − 1)
(κ2 + κ′2) − 2

A − 1
�κ · �κ ′

}

× 1
π
√

π

∫
d3�y exp{−y2}x(�β ′

2,
�β1)
}

, (3.13)

where use has been made of the operator (2.27) with �q1 =
�κ/A and �q2 = �κ ′/A and the function x is defined by eqs.
(2.47), (2.50) and (2.53). For (2.46) we obtain here

�β ′
2 ≡

√
2

A−1

(
�y + iA√

A−1
(�κ + 1

A�κ ′)
)

,

�β1 ≡
√

2
A−1

(
�y + iA√

A−1
(�κ ′ + 1

A�κ)
)

. (3.14)

Again we introduce “relative” oscillator wave functions by
replacing the nucleon mass M now by the reduced mass
MA/(A + 1). In Cartesian representation of momentum
space these have the form

〈�k ′|�n〉rel =
(

b√
π

)3/2(
A + 1

A

)3/4

×exp
{
−1

2
A+1

A
κ′ 2

} 3∏
i=1

(√
A+1

A
κ′

i|ni

)
. (3.15)

The projected particle-spectral functions are then defined
by

fpro
�n p (�k) ≡

∫
d3�k ′npp(�k, �k ′)〈�k ′|�n 〉rel . (3.16)

Evaluating this expression with the help of the recursion
relations (2.4), we obtain after a lengthy but straightfor-
ward calculation

fpro
N (�k) = 〈�k|�n〉rel

√
Spro

N , (3.17)

where N = n1 +n2 +n3 is the major shell quantum num-
ber and the irrelevant spin-isospin quantum numbers have
been supressed. For the projected particle spectroscopic
factors one gets in the three considered nuclei

Spro
N (A = 4) =

(
1 − (−)N 1

AN

)2

,

Spro
N (A = 16) =

(
1 − (−)N 1

AN
[1 − N(A + 1)]

)2

,

Spro
N (A = 40) =

(
1 − (−)N 1

AN

[
1 − 1

2
(A + 1)(A + 3)

×N +
1
2
(A + 1)2N2

])2

. (3.18)
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Fig. 2. The projected particle spectroscopic factors (3.18) are
plotted for the three nuclei 4He, 16O and 40Ca. They have
to be compared with the conventional description (3.5) of an
uncorrelated system which gives one for all the unoccupied
states.

One can verify easily that the expressions (3.18) give zero
for all major shells which are occupied in the correspond-
ing reference determinants | 〉. The results for the particle
states are plotted in fig. 2. Here one observes an oscillat-
ing behaviour. The spectroscopic factors are larger than
one for the first unoccupied shell (non-spurious particle
states), smaller than one for the next shell (1�ω excita-
tions), again enhanced for 2�ω excitations and so on. The
deviations from the normal result decrease, however, with
increasing N .

4 Conclusions

In the first of the present series of papers it was demon-
strated how with the help of projection techniques the
Galilei invariance of simple bound states can be restored.
The mathematical tools to perform such projections for
simple oscillator configurations have been developed so
that now the effects of the restoration of Galilei invari-
ance can be studied for arbitrary observables. It should be
stressed, however, that the projection method is not re-
stricted to harmonic-oscillator configurations but can be
used also for general determinants.

As a first example the spectral functions and spectro-
scopic factors for simple oscillator ground states of 4He,
16O and 40Ca have been computed. For the one-hole states
complete agreement with the results of Dieperink and de
Forest [13] was obtained. It turned out that the restoration
of Galilei invariance has considerable effects on our notion
of an “uncorrelated system”. Even in the simple oscillator
case treated here, the hole and particle spectroscopic fac-
tors (3.10) and (3.18) are rather different from the usual
ones (3.2) and (3.5). Using them (and this one should do)
as reference instead of the normal description thus leads
to a rather different interpretation for the amount of cor-
relations seen in a physical experiment.
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It should be stressed furthermore that while the func-
tional dependence of the COM-projected spectral func-
tions in this simple example could be easily reproduced
by the “normal” approach if modified oscillator length
parameters are used, the spectroscopic factors are inde-
pendent of the choice of the oscillator length. We shall see
some consequences of this fact in the analysis of quasi-
elastic electron scattering in paper four of the present se-
ries of papers. For the case of 16O such effects have also
been analysed in a recent paper [14].

The author is grateful to Prof. Akito Arima who suggested the
present investigation many years ago.
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